For \#1 and 2, name the fraction or mixed number that is represented by the shaded area.
1.

2.

30 pieces
3. Meena purchased 10 identical boards to build a bookcase. According to the bookcase plans, she will need to cut them each into thirds. After cutting, how many pieces will she have?
4. For Thanksgiving, Mateo bakes 5 pies for his family and friends. He cuts each pie into 8 equal pieces. At dessert, his guests eat 3 whole pies as well as 5 slices of a fourth pie. How many pies are left? Write your answer as a mixed number.

For \#5-8, write each improper fraction as a mixed or whole number.
5. $\frac{19}{3}=\underline{6}$
6. $\frac{9}{2}=\underline{4 \frac{1}{2}}$
7. $\frac{50}{5}=\underline{10}$
8. $\frac{10}{7}=\underline{1 \frac{3}{7}}$

For \#9-12, write each mixed number as an improper fraction.
9. $1 \frac{2}{9}=\underline{\frac{11}{9}}$
10. $3 \frac{7}{20}=\underline{\frac{67}{20}}$
11. $5 \frac{1}{2}=\underline{\frac{11}{2}}$
12. $7 \frac{71}{100}=-\frac{771}{100}$
13. What type of fraction shows a numerator greater than the denominator? improper fraction
14. A contractor measures the width of a brick fireplace as 65 inches. What is the width of this
fireplace in feet? Write your answer as a mixed number.
15. Jonah donates $\frac{3}{10}$ of his allowance to a charity for wildlife. What fraction of his allowance does he have left?
16. Mark the point that represents $3 \frac{3}{4}$ on the number line.

17. Mark the point that represents $\frac{12}{7}$ on the number line.

For \#18-22, use >, <, or $=$ in each circle to make a true statement.
18. $\frac{11}{2}>1 \frac{1}{2}$
19. $\frac{5}{7}<1 \frac{2}{7}$
20. $3 \frac{2}{5} \Theta \frac{17}{5}$
21. $9 \bigcirc \frac{90}{9}$
22. $4 \frac{1}{10} \bigcirc 4 \frac{1}{4}$

For \#23 and 24, place the fractions in order from least to greatest:
19. $1 \frac{5}{9}, \frac{5}{9}, \frac{11}{9}, \frac{5}{11} \frac{\frac{5}{11}, \frac{5}{9}, \frac{11}{9}, 1 \frac{5}{9}}{}$
20. $\frac{10}{3}, 2 \frac{3}{4}, \frac{3}{7}, \frac{7}{2}-\frac{3}{7}, 2 \frac{3}{4}, \frac{10}{3}, \frac{7}{2}$

