Fix Those Fractions!! Self-Help Guide!

Adding Fractions

If one half of a pie is added to the other half of that same pie, what would be the result? The answer is obviously the whole pie. Therefore $\frac{1}{2}+\frac{1}{2}=1$. If $\frac{1}{2}$ was added to $\frac{1}{4}$, could the answer be $\frac{2}{6}$ (which is equal to $\frac{1}{3}$) which is less than $\frac{1}{2}$? Definitely not! The process used to combine fractions should produce a reasonable answer.

Addition requires "like terms" which means like denominators or common denominators.
If denominators are alike, combine the numerators. Simplify if necessary.

$$
\begin{aligned}
& \text { Example \#18: } \frac{\mathbf{2}}{\mathbf{5}}+\frac{\mathbf{1}}{\mathbf{5}} \\
& \text { Combine the numerators: } \\
& \frac{2+1}{5}=\frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Example \#19: } \frac{\mathbf{3}}{\mathbf{8}}+\frac{\mathbf{1}}{\mathbf{8}} \\
\text { Combine the numerators: } \\
\text { Simplify (divide by the GCF): } \\
\frac{3+1}{8}=\frac{4}{8} \\
\hline
\end{array} \frac{4}{4}=\frac{4 \div 4}{8 \div 4}=\frac{1}{2}
\end{aligned}
$$

If the denominators are different, first produce common denominators. To find the least common denominator (LCD), find the least common multiple (LCM) which is the smallest number that is a multiple of both numbers.

$$
\text { Example \#20: } \frac{1}{2}+\frac{1}{3}
$$

Find the LCM (list multiples
Multiples of 2: 2, 4, 6, $8, \ldots$
Multiples of 3: 3, $6,9, \ldots$
Multiply by a form of $1\left(\frac{3}{3}\right.$ and $\left.\frac{2}{2}\right) \frac{1}{2} \cdot \frac{3}{3}+\frac{1}{3} \cdot \frac{2}{2}=\frac{1 \cdot 3}{2 \cdot 3}+\frac{1 \cdot 2}{3 \cdot 2}$
to produce the LCD:
Combine the numerators: $\quad \frac{3}{6}+\frac{2}{6}=\frac{3+2}{6}=\frac{5}{6}$

For more information on equivalent fractions, see Example 12 on page 14.

Fix Those Fractions!! Self-Help Guide!

Adding Fractions (continued)

$$
\text { Example \#21: } \frac{3}{4}+\frac{5}{6}
$$

Find the LCM (list multiples
if necessary):

Multiples of 4: 4, 8, 12. \ldots
Multiples of 6: 6, 12, 18, \ldots

Multiply by a form of $1\left(\frac{3}{3}\right.$ and $\left.\frac{2}{2}\right) \quad \frac{3}{4} \cdot \frac{3}{3}+\frac{5}{6} \cdot \frac{2}{2}=\frac{3 \cdot 3}{4 \cdot 3}+\frac{5 \cdot 2}{6 \cdot 2}$
to produce the LCD:
Combine the numerators:

$$
\frac{9}{12}+\frac{10}{12}=\frac{9+10}{12}=\frac{19}{12}
$$

Note: $\frac{19}{12}$ is an improper fraction. It is simplified because there are no common factors between the numerator and denominator. It can be changed to a mixed number if preferred.

$$
\text { Example \#22: } 8+\frac{5}{6}
$$

Place the whole number over $1: \quad \frac{8}{1}+\frac{5}{6}$
Find the LCM (list multiples if necessary):

Multiples of 1: 1, 2, 3, 4, 5,6,...
Multiples of 6: 6, $12, \ldots$
Multiply by a form of $1\left(\frac{6}{6}\right)$ to produce the LCD:
$\frac{8}{1} \cdot \frac{6}{6}+\frac{5}{6}=\frac{8 \cdot 6}{1 \cdot 6}+\frac{5}{6}$
Combine the numerators:

$$
\frac{48}{6}+\frac{5}{6}=\frac{48+5}{6}=\frac{53}{6}
$$

Note: $\frac{53}{6}$ is an improper fraction. It is simplified because there are no common factors between the numerator and denominator. It can be changed to a mixed number if preferred.

